题 目:“Conversion of Carbon Dioxide through Catalysis and Electrocatalysis”(二氧化碳的催化和电催化转化) 报告人:陈经广 教授(哥伦比亚大学, Brookhaven国家实验室) 时 间:2016年6月17日上午 10:00 - 11:30 地 点:化学馆120室 哥伦比亚大学Jingguang Chen教授简介 Jingguang Chen(陈经广),哥伦比亚大学教授,国际催化领域著名科学家和学术带头人。受聘于清华大学化工系,在清华大学工业催化学科筹建、ABET认证指导、人才引进和公司产品等方面发挥了重要作用。2014年在中科院大连化物所受聘“中国科学院特聘研究员”。已发表学术期刊论文300余篇,总引用次数超过12, 000次;获授权美国发明专利20余项。目前担任美国化学会催化科学分部主席,美国能源局资助的原位催化同步辐射协会主任,并担任多个表面科学与催化领域的国际期刊主编和编委。曾荣获ACS Fellow (2013),Herman Pines Award in Catalysis (2011),Excellence in Catalysis Award from the New York Catalysis Society (2008) Chicago (2011) and Michigan (2015)等荣誉,2015年获年度“美国化学会乔治·A·欧拉奖”(ACS 2015 George A. Olah Award),表彰他在金属碳化物和双金属合金在催化及电催化领域做出的对工业界和学术界都具有重要影响的突出成就。 陈经广教授于1982年毕业于南京大学并获学士学位,同年通过中-美研究生选拔项目赴美国匹兹堡大学学习,1988年获博士学位,之后获洪堡奖学金在德国进行一年的博士后工作。1989年进入Exxon公司工作,1998年加入特拉华大学,期间曾任催化科学与技术中心主任,2008年被任命为Claire D. LeClaire讲席教授。他现任职于美国哥伦比亚大学,为Thayer Lindsley 讲席教授,同时受Brookhaven美国国家实验室的聘任。
学术报告摘要 Conversion of Carbon Dioxide through Catalysis and Electrocatalysis Jingguang Chen Thayer Lindsley Professor of Chemical Engineering, Columbia University, New York, NY 10027, USA Ocean acidification and climate change are expected to be two of the most difficult scientific challenges of the 21st century. Converting CO2 into valuable chemicals and fuels is one of the most practical routes for reducing CO2 emissions while fossil fuels continue to dominate the energy sector. The catalytic reduction of CO2 by H2 can lead to the formation of three types of products: CO through the reverse water-gas shift (RWGS) reaction [1], methanol via selective hydrogenation [2], and hydrocarbons [3]. Our research approaches involve the combination of DFT calculations and surface science studies over single crystal surfaces, evaluations over supported catalysts, and in-situ characterization under reaction conditions. In the current talk we will present some of our recent results in CO2 conversion via both heterogenerous catalysis [4] and electrocatalysis [5]. We will also discuss the generation of CO2-free H2 [6,7], which is critical for net CO2 reduction. We will conclude by discussing challenges and opportunities in this important research field [8]. References: [1] M.D. Porosoff, X. Yang, J.A. Boscoboinik, and J.G. Chen, “Molybdenum carbide as alternative catalysts to precious metals for highly selective reduction of CO2 to CO”, Angewandte Chemie International Edition, 53 (2014) 6705. [2] X. Yang, S. Kattel, S.D. Senanayake, J.A. Boscoboinik, X. Nie, J. Graciani, J.A. Rodriguez, P. Liu, D.J. Stacchiola and J.G. Chen, “Low pressure CO2 hydrogenation to methanol over gold nanoparticles activated on a CeOx/TiO2 interface”,Journal of the American Chemical Society, 137 (2015) 10104. [3] S. Kattel, W. Yu, X. Yang, B. Yan, Y. Huang, W. Wan, P. Liu and J.G. Chen, “CO2 hydrogenation on oxide-supported PtCo catalysts: Fine-tuning selectivity using oxide supports”, Angewandte Chemie International Edition, (2016) DOI: 10.1002/anie.201601661 [4] M.D. Porosoff, M. Myint, S. Kattel, Z. Xie, E. Gomez, P. Liu and J.G. Chen, “Identifying different types of catalysts for CO2 reduction by ethane through dry reforming and oxidative dehydrogenation”, Angewandte Chemie International Edition, 54 (2015) 15501. [5] Q. Lu, J. Rosen, Y. Zhou, G.S. Hutchings, Y.C. Kimmel, J.G. Chen and F. Jiao, “A highly selective and efficient electrocatalyst for carbon dioxide reduction”, Nature Communications, 5 (2014) 3242. [6] M.R. Stonor, T.E. Fergusonb, J.G. Chen and A.-H. Park, “Biomass conversion to H2 with substantially Suppressed CO2 formation in the presence of Group I & Group II hydroxides and a Ni/ZrO2 catalyst”, Energy & Environmental Science, 8 (2015) 1702. [7] Q. Lu, G.S. Hutchings, W. Yu, Y. Zhou, R.V. Forest, R. Tao, J. Rosen, B.T. Yonemoto1, Z. Cao, H. Zheng, J.Q. Xiao, F. Jiao and J.G. Chen, “Highly porous non-precious bimetallic electrocatalysts for efficient hydrogen evolution”, Nature Communications, 6 (2015) 6567 [8] M.D. Porosoff, B. Yan and J.G. Chen, “Catalytic reduction of CO2 by H2 for synthesis of CO, methanol and hydrocarbons: Challenges and opportunities”, Energy & Environmental Science, 9 (2016) 62. |